Ken Michael

Results: 181



#Item
11Machine learning / Robot learning / Artificial neural network / Deep learning / Motion planning / Robotics / Supervisor / Apprenticeship learning / Clutter / Robot / Reinforcement learning

Robot Grasping in Clutter: Using a Hierarchy of Supervisors for Learning from Demonstrations Michael Laskey1 , Jonathan Lee1 , Caleb Chuck1 , David Gealy1 , Wesley Hsieh1 , Florian T. Pokorny1 , Anca D. Dragan1 , and Ken

Add to Reading List

Source URL: goldberg.berkeley.edu

Language: English - Date: 2016-03-30 14:30:58
12

RAMANUJAN’S MOCK THETA FUNCTIONS MICHAEL GRIFFIN, KEN ONO, AND LARRY ROLEN Abstract. In his famous deathbed letter, Ramanujan introduced the notion of a mock theta function, and he offered some alleged examples. Recent

Add to Reading List

Source URL: web.math.princeton.edu

Language: English - Date: 2015-09-21 12:48:26
    13

    Proof of the Umbral Moonshine Conjecture John F. R. Duncan, Michael J. Griffin and Ken Ono 2015 October 13 Abstract The Umbral Moonshine Conjectures assert that there are infinite-dimensional graded modules, for prescrib

    Add to Reading List

    Source URL: web.math.princeton.edu

    Language: English - Date: 2015-10-13 16:00:54
      14

      MOONSHINE JOHN F. R. DUNCAN, MICHAEL J. GRIFFIN AND KEN ONO Abstract. Monstrous moonshine relates distinguished modular functions to the representation theory of the Monster M. The celebrated observations that (*) 1 = 1

      Add to Reading List

      Source URL: web.math.princeton.edu

      Language: English - Date: 2015-09-21 12:48:26
        15Medicine / Clinical medicine / Motion planning / Theoretical computer science / Biopsy / Hypodermic needle / Magnetism / Needle / Stereotactic surgery / Shortest path problem

        The International Journal of Robotics Research http://ijr.sagepub.com Motion Planning Under Uncertainty for Image-guided Medical Needle Steering Ron Alterovitz, Michael Branicky and Ken Goldberg

        Add to Reading List

        Source URL: goldberg.berkeley.edu

        Language: English - Date: 2008-11-26 02:58:51
        16

        WEIERSTRASS MOCK MODULAR FORMS AND ELLIPTIC CURVES CLAUDIA ALFES, MICHAEL GRIFFIN, KEN ONO, AND LARRY ROLEN Abstract. Mock modular forms, which give the theoretical framework for Ramanujan’s enigmatic mock theta functi

        Add to Reading List

        Source URL: web.math.princeton.edu

        Language: English - Date: 2015-09-21 12:48:26
          17

          RAMANUJAN’S MOCK THETA FUNCTIONS MICHAEL GRIFFIN, KEN ONO, AND LARRY ROLEN Abstract. In his famous deathbed letter, Ramanujan introduced the notion of a mock theta function, and he offered some alleged examples. Recent

          Add to Reading List

          Source URL: www.mathcs.emory.edu

          Language: English - Date: 2013-02-28 16:30:42
            18Statistics / Probability / Child development / Grasp / Reinforcement learning / Gittins index / Gaussian process / Sensitivity analysis / Monte Carlo integration / Probability distribution / Monte Carlo method / Sampling

            Multi-Armed Bandit Models for 2D Grasp Planning with Uncertainty Michael Laskey1 , Jeff Mahler1 , Zoe McCarthy1 , Florian T. Pokorny1 , Sachin Patil1 , Jur van den Berg4 , Danica Kragic3 , Pieter Abbeel1 , Ken Goldberg2

            Add to Reading List

            Source URL: goldberg.berkeley.edu

            Language: English - Date: 2015-08-31 02:12:22
            19

            A FRAMEWORK OF ROGERS–RAMANUJAN IDENTITIES AND THEIR ARITHMETIC PROPERTIES MICHAEL J. GRIFFIN, KEN ONO, AND S. OLE WARNAAR In memory of Basil Gordon and Alain Lascoux Abstract. The two Rogers–Ramanujan q-series ∞

            Add to Reading List

            Source URL: web.math.princeton.edu

            Language: English - Date: 2015-09-21 12:48:26
              20Mathematical optimization / Systems theory / Engineering / Systems science / Control theory / Robot control / Operations research / Optimal control / Trajectory optimization / Kalman filter / Model predictive control / Quadratic programming

              Scaling up Gaussian Belief Space Planning through Covariance-Free Trajectory Optimization and Automatic Differentiation Sachin Patil, Gregory Kahn, Michael Laskey, John Schulman, Ken Goldberg, Pieter Abbeel University of

              Add to Reading List

              Source URL: goldberg.berkeley.edu

              Language: English - Date: 2014-04-26 02:11:09
              UPDATE